Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 97: 105813, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522493

RESUMEN

The aims of the current study included characterizing the intestinal transport mechanism of polystyrene microplastics (MPs) with different charges and sizes in the intestinal epithelial cell model and determining the inhibitory effect of green tea extracts (GTEs) on the intestinal absorption of MPs in Caco-2 cells. The smaller sizes, which included diameters of 0.2 µm, of amine-modified MPs compared to either larger size (1 µm diameter, or carboxylate-MPs (0.2 and 1 µm diameter) significantly lowered the cell viability of caco-2 cells that were measured by MTT assay (p < 0.05). The transported amount (particles/mL of the cell media) of amine-modified MPs by the Caco-2 cell, was not dependent according to the concentrations, energy, or temperature, but it was higher than the carboxylate-modified MPs. The co-treatment of GTEs with the amine-modified MPs inhibited Caco-2 cell cytotoxicity as well as reduced the production of intracellular reactive oxygen species (ROS) in HepG2 generated by the exposure of amine-modified MPs. The GTEs co-treatment also increased trans-epithelial electrical resistances (TEER) and reduced the transportation of Lucifer Yellow via the Caco-2 monolayer compared to only the amine-modified MPs exposure. The GTEs treatment led to a decrease in the number of amine-modified MPs transported to the basal side of the Caco-2 monolayer. The results from our study suggest that the consumption of GTEs could enhance the intestinal barrier function by recovering intestinal epithelial cell damage induced by MPs, which resulted in a decrease of the intestinal absorption of MPs.


Asunto(s)
Microplásticos , Poliestirenos , Humanos , Poliestirenos/toxicidad , Microplásticos/toxicidad , Plásticos , Células CACO-2 , Antioxidantes , Absorción Intestinal , , Aminas
2.
Food Microbiol ; 116: 104364, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37689426

RESUMEN

The chemotaxonomic diversity of 20 Lactiplantibacillus plantarum strains was investigated using non-targeted metabolite profiling under different culture conditions. Multivariate and metabolic pathway analyses based on GC-MS and LC-MS/MS datasets showed that amino acid metabolism, especially 2-hydroxy acids, was enriched under aerobic conditions (AE), whereas fatty acid & sugar metabolism was increased under anaerobic conditions (AN). Based on the metabolite profiles, L. plantarum strains were clustered into three main groups (A, B, and C). Overall, 79 and 83 significantly discriminant metabolites were characterized as chemical markers of AE and AN growth conditions, respectively. Notably, alcohols were more abundant in group A whereas amino acids, peptides, purines, and pyrimidines were significantly higher in group C. 2-hydroxy acids and oxylipins biosynthesized through amino acid and fatty acid metabolism, respectively, were more abundant in groups A and B. Furthermore, we observed a strong correlation between the chemical diversity of L. plantarum groups and their antioxidant activity from metabolite extracts. We propose a non-targeted metabolomic workflow to comprehensively characterize the chemodiversity of L. plantarum strain under different culture conditions, which may help reveal specific biomarkers of individual strains depending on the culture conditions.


Asunto(s)
Aminoácidos , Espectrometría de Masas en Tándem , Anaerobiosis , Cromatografía Liquida , Hidroxiácidos , Ácidos Grasos
3.
J Microbiol Biotechnol ; 33(10): 1317-1328, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37435870

RESUMEN

Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.


Asunto(s)
Antioxidantes , Catequina , Humanos , Antioxidantes/farmacología , Espectrometría de Masas en Tándem , Polifenoles/farmacología , Polifenoles/química , Polifenoles/metabolismo , Bacterias , , Catequina/farmacología
4.
J Med Food ; 26(5): 299-306, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37074675

RESUMEN

Collagen-derived dipeptides and tripeptides have various physiological activities. In this study, we compared the plasma kinetics of free Hyp, peptide-derived Hyp, Pro-Hyp, cyclo(Pro-Hyp), Hyp-Gly, Gly-Pro-Hyp, and Gly-Pro-Ala after ingestion of four different collagen samples: AP collagen peptide (APCP), general collagen peptide, collagen, and APCP and γ-aminobutyric acid (GABA) combination. Each peptide was measured by high-performance liquid chromatography and triple quadrupole mass spectrometer. We found that, among all the peptides that were analyzed, only Gly-Pro-Hyp was significantly increased after ingestion of APCP compared with that of general collagen peptides and collagen. In addition, ingestion of the APCP and GABA combination improved the absorption efficiency of Gly-Pro-Ala. Finally, we reveal that Gly-Pro-Hyp was effective for preventing H2O2-induced reduction in extracellular matrix (ECM)-related genes, COL1A, elastin, and fibronectin, in dermal fibroblasts. Taken together, APCP significantly enhances the absorption of Gly-Pro-Hyp, which might act as an ECM-associated signaling factor in dermal fibroblasts, and the APCP and GABA combination promotes Gly-Pro-Ala absorption. Clinical Trial Registration number: UMIN000047972.


Asunto(s)
Colágeno , Fibroblastos , Peróxido de Hidrógeno , Péptidos , Absorción Fisiológica , Colágeno/administración & dosificación , Colágeno/química , Ingestión de Alimentos , Fibroblastos/metabolismo
5.
Nutrients ; 14(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631156

RESUMEN

Irritable bowel syndrome (IBS) causes intestinal discomfort, gut dysfunction, and poor quality of life. This randomized, double-blind placebo-controlled trial evaluated the efficacy of Lactiplantibacillus (Lp., formerly Lactobacillus) plantarum APsulloc 331261 (GTB1TM) from green tea leaves in participants with diarrhea-predominant irritable bowel syndrome (IBS-D). Twenty-seven participants meeting the Rome IV diagnostic criteria were randomized for GTB1 or placebo ingestion for four weeks and follow-up for two weeks. The efficacy endpoints included adequate global relief of symptoms, assessment of intestinal discomfort symptom severity and frequency, stool frequency, satisfaction, and fecal microbiome abundance. Of all participants, 94.4% and 62.5% reported global relief of symptoms in the GTB1 and placebo groups, respectively, with significant differences (p = 0.037). GTB1 significantly reduced the severity and frequency of abdominal pain, bloating, and feeling of incomplete evacuation. The frequencies of diarrhea were decreased -45.89% and -26.76% in the GTB1 and placebo groups, respectively (p = 0.045). Hence, GTB1 ingestion improved IBS-D patient quality of life. After four weeks treatment, the relative abundance of Lactobacillus was higher in the GTB1 than in the placebo group (p = 0.010). Our results showed that GTB1 enhanced intestinal discomfort symptoms, defecation consistency, quality of life, beneficial microbiota, and overall intestinal health.


Asunto(s)
Síndrome del Colon Irritable , Lactobacillus plantarum , Diarrea/etiología , Método Doble Ciego , Humanos , Calidad de Vida , Resultado del Tratamiento
6.
Front Biosci (Elite Ed) ; 13(2): 237-248, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34937311

RESUMEN

Balanced skin microbiota is crucial for maintaining healthy normal skin function; however, disruption of the balance in skin microbiota is linked with skin diseases such as atopic dermatitis, acne vulgaris, dandruff, and candidiasis. Lactoplantibacillus species with proved with health benefits are probiotics that improve the balance of microbiome in skin and gut. In the present study, we investigated the potential antimicrobial activity of Lactiplantibacillus plantarum APsulloc 331261 (APsulloc 331261) and Lactiplantibacillus plantarum APsulloc 331266 (APsulloc 331266) derived from green tea, in inhibiting five skin pathogenic strains (Staphylococcus aureus (S. aureus), Cutibacterium acnes (C. acnes), Candia albicans (C. albicans), Malassezia globosa (M. globose), and Malassezia restricta (M. restricta)) associated with skin infection. Viability of S. aureus, C. acnes, C. albicans, M. globosa, and M. restricta was inhibited by indirect co-culture with APsulloc 331261 or APsulloc 331266 at various ratios. Different concentrations of the cell-free conditioned media (CM) derived from APsulloc 331261 or APsulloc 331266 inhibited the vaibility of S. aureus, C. acnes, C. albicans, M. globosa, and M. restricta in a dose dependent manner. Moreover, susceptibility of S. aureus, C. acnes and C. albicans against APsulloc 331261 or APsulloc 331266 was confirmed following agar overlay methods. Results of the agar overlay confirmed that various concentrations of APsulloc 331261 and APsulloc 331266 exhibited low to high inhibitory activity on the growth of S. aureus (ZDI 20.3 ± 2.1-32.3 ± 2.1 mm, R value 5.7 ± 0.8-7.8 ± 1.3 mm), C. acnes (ZDI 15.0 ± 1.7-22.2 ± 1.7 mm, R value 3.2 ± 1.3-5.5 ± 1.3 mm) and C. albicans (ZDI 13.3 ± 4.0-27.0 ± 3.6 mm, R value 2.8 ± 1.9-5.5 ± 1.7 mm). Finally, standard PCR analysis identified the presence of the of plantaricin genes encoding antimicrobial peptides in APsulloc 331261 and APsulloc 331266. These results suggest that APsulloc 331261 and APsulloc 331266 has a potential effect in the improvement of the balance of skin microbiota by inhibiting skin pathogenic strains.


Asunto(s)
Antiinfecciosos , Microbiota , Péptidos Antimicrobianos , Piel , Staphylococcus aureus
7.
J Agric Food Chem ; 69(50): 15208-15217, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881881

RESUMEN

The purpose of the current study was to investigate the effect of various characterized green tea extracts (GTEs) according to extraction methods on enzymatic starch hydrolysis and intestinal glucose transport. Codigestion of wheat starch with water extract (WGT) or ethanol extract formulated with green tea polysaccharides and flavonols (CATEPLUS) produced 3.4-3.5 times higher resistant starch (RS) than wheat starch only. Its microstructures were changed to spherical shapes and smooth surfaces as shown by scanning electron microscopy (SEM) results. According to Fourier transform infrared (FT-IR) spectra, the absorption peak of O-H stretching was red-shifted in WGT or CATEPLUS. The results confirmed that hydrogen bonds were formed between starch granules and polysaccharides in WGT or CATEPLUS. Intestinal glucose transport subsequently measured after in vitro digestion was mostly suppressed in CATEPLUS. Gene expression of the glucose transporter protein, particularly SGLT1, was significantly inhibited by addition of CATEPLUS (p < 0.05). Results from the current study suggest that co-intake of green tea extracts formulated with green tea polysaccharides and flavonols could be a potentially useful means to delay blood glucose absorption when consuming starchy foods.


Asunto(s)
Almidón , , Glucosa , Hidrólisis , Extractos Vegetales , Espectroscopía Infrarroja por Transformada de Fourier
8.
Nutrients ; 13(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34959923

RESUMEN

The stratum corneum (SC) is the outermost layer of the epidermis and plays an important role in maintaining skin moisture and protecting the skin from the external environment. Ceramide and natural moisturizing factor (NMF) are the major SC components that maintain skin moisture. In this study, we investigated whether the oral intake of enzymatically decomposed AP collagen peptides (APCPs) can improve skin moisture and barrier function by assessing changes in the ceramide and NMF contents in the SC after APCP ingestion with the aim to develop a skin functional food. Fifty participants orally ingested APCP (1000 mg) or placebo for 12 weeks, and then, skin hydration and skin texture were evaluated. SC samples were collected to analyze skin scaling, ceramide, and NMF contents. Participants in the APCP group exhibited improved skin moisture content by 7.33% (p = 0.031) and roughness by -4.09% (p = 0.036) when compared with those in the placebo group. NMF content; the amounts of amino acids (AA), including glycine and proline; and AA derivatives were significantly increased in the APCP group (31.98 µg/mg protein) compared to those in the placebo group (-16.01 µg/mg protein) (p = 0.006). The amounts of total ceramides and ceramide subclasses were significantly higher in the APCP group than in the placebo group (p = 0.014). In conclusion, our results demonstrate that APCP intake improves skin moisture and increase the ceramide and NMF contents in the SC, thereby enhancing the skin barrier function.


Asunto(s)
Agua Corporal/metabolismo , Ceramidas/metabolismo , Colágeno/administración & dosificación , Colágeno/farmacología , Suplementos Dietéticos , Ingestión de Alimentos/fisiología , Epidermis/metabolismo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pérdida Insensible de Agua/efectos de los fármacos
9.
J Agric Food Chem ; 69(47): 14075-14085, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784711

RESUMEN

The purpose of the current study was to investigate the effect of green tea ethanol extract (GTE) and polysaccharide fractions from green tea (PFGs) on the hydrolysis of wheat starch, microstructural changes, and intestinal transport of glucose. The amount of resistant starch (RS) was significantly lowered in the water-soluble polysaccharide (WSP), water-soluble polysaccharide-pectinase (WSP-P), and water-insoluble polysaccharide-alkali soluble (WISP-Alk-Soluble; p < 0.05). The microstructures of gelatinized wheat starch granules with WSP, WSP-P, and WISP-Alk-Soluble were spherical with small cracks. The amount of intestinal transported glucose from digested wheat starch was 2.12-3.50 times lower than the control group. The results from the current study suggest that water- and alkali-soluble PFGs could be potential ingredients to lower starch hydrolysis as well as to control the postprandial blood glucose level when foods that contain starch are consumed.


Asunto(s)
Almidón , , Glucosa , Hidrólisis , Polisacáridos , Triticum
10.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946465

RESUMEN

Cortisol is an endogenous glucocorticoid (GC) and primary stress hormone that regulates a wide range of stress responses in humans. The adverse effects of cortisol on the skin have been extensively documented but the underlying mechanism of cortisol-induced signaling is still unclear. In the present study, we investigate the effect of cortisol on collagen type I expression and the effect of AP collagen peptides, collagen tripeptide-rich hydrolysates containing 3% glycine-proline- hydroxyproline (Gly-Pro-Hyp, GPH) from the fish skin, on the cortisol-mediated inhibition of collagen type I and the cortisol-induced signaling that regulates collagen type I production in human dermal fibroblasts (HDFs). We determine that cortisol downregulates the expression of collagen type I. AP collagen peptides or GC receptor (GR) inhibitors recover the cortisol-mediated inhibition of collagen type I and GR activation. AP collagen peptides or GR inhibitors also prevent the cortisol-dependent inhibition of transforming growth factor (TGF)-ß signaling. AP collagen peptides or GR inhibitors are effective in the prevention of collagen type I inhibition mediated by cortisol in senescent HDFs and reconstituted human skin models. Taken together, GR signaling might be responsible for the cortisol-mediated inhibition of TGF-ß. AP collagen peptides act as GR-mediated signaling blockers, preventing the cortisol-dependent inhibition of collagen type I. Therefore, AP collagen peptides have the potential to improve skin health.


Asunto(s)
Antiinflamatorios/farmacología , Colágeno Tipo I/metabolismo , Fibroblastos/efectos de los fármacos , Hidrocortisona/farmacología , Oligopéptidos/farmacología , Animales , Línea Celular , Dermis/citología , Dermis/efectos de los fármacos , Dermis/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Peces , Humanos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
11.
J Med Food ; 23(8): 841-851, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32598202

RESUMEN

Trillions of microorganisms reside in the hosts' gut. Since diverse activities of gut microbiota affect the hosts' health status, maintenance of gut microbiota is important for maintaining human health. Green tea (GT) has multiple beneficial effects on energy metabolism with antiobesity, antidiabetic, and hypolipidemic properties. As GT contains a large amount of bioactive ingredients (e.g., catechins), which can be metabolized by microorganisms, it would be feasible that consumption of GT may cause compositional changes in gut microbiota, and that the changes in gut microbiota would be associated with the beneficial effects of GT. In this study, we demonstrated that consumption of GT extract relieves high-fat diet-induced metabolic abnormalities. Interestingly, GT administration significantly encouraged the growth of Akkermansia muciniphila (Akkermansia), a beneficial microorganism to relieve obesity and related metabolic disorders. Finally, we found that epigallocatechin gallate is the component of GT that stimulates the growth of Akkermansia. According to these data, we propose that GT could be a prebiotic agent for Akkermansia to treat metabolic syndromes.


Asunto(s)
Akkermansia/crecimiento & desarrollo , Catequina/análogos & derivados , Microbioma Gastrointestinal , Té/química , Akkermansia/efectos de los fármacos , Animales , Catequina/farmacología , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos BALB C
12.
Food Funct ; 9(1): 234-242, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29168878

RESUMEN

Quercetin and fisetin, known as catechol-containing flavonoids, could positively affect the absorption of catechins due to their strong affinity for catechol-O-methyl transferase (COMT), which can methylate and cause the excretion of catechins. The current study examined the effect of quercetin and fisetin on the absorption of epi-catechins (ECs) by using a Caco-2 cell line and an in vivo model. The intestinal transport of total catechins by Caco-2 cells was enhanced from 1.3- to 1.6-fold and 1.4- to 1.7-fold by adding quercetin and fisetin, respectively, compared to the control. It was even higher in the treatment with a mixture of quercetin and fisetin. While EC had the highest value of intestinal transport (169% of the control) in 10% quercetin treatment, EGC (235%), EGCG (244%), and ECG (242%) were significantly transported in the treatment with a 5% mixture of quercetin and fisetin (p < 0.05). In an in vivo pharmacokinetic study, the values of the area under the plasma concentration-time curve (AUC, ng h mL-1) were also higher in rats orally administered EGCG with 10% quercetin (365.5 ± 25.5) or 10% fisetin (825.3 ± 46.7) than in those administered EGCG only (111.3 ± 13.1). Methylated quercetin and methylated fisetin were determined to be m/z 317.24 and m/z 301.25 [M + H]+ with their own product ions, respectively. The results indicate that quercetin or fisetin is superior to ECs for methylation by COMT.


Asunto(s)
Catequina/sangre , Flavonoides/administración & dosificación , Intestino Delgado/efectos de los fármacos , Extractos Vegetales/sangre , Quercetina/administración & dosificación , Animales , Células CACO-2 , Camellia sinensis/química , Catequina/farmacocinética , Flavonoides/química , Flavonoles , Humanos , Intestino Delgado/metabolismo , Masculino , Metilación , Extractos Vegetales/farmacocinética , Quercetina/química , Ratas , Ratas Sprague-Dawley
13.
Biol Pharm Bull ; 35(8): 1222-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22863917

RESUMEN

Atopic dermatitis (AD) is characterized as a multi-factorial inflammatory skin disease that has been increasing worldwide. Previously, we demonstrated that FPG, which is Platycodon grandiflorum (PG) fermented by Lactobacillus plantarum (LP), increases the level of interferon (IFN)-gamma in mouse splenocytes in vitro. In this study, we investigated the effects of FPG in an animal model of AD, with a particular emphasis on its effects on T helper (Th)1 and Th2 immune responses. To assess the potential use of FPG for the inhibition of AD, we established a model of AD-like skin lesions in NC/Nga mice. Immunoglobulin isotypes (Igs) and Th1/Th2 cytokines in the sera and spleens of AD-like mice were examined. In addition, histological examination was also performed. AD symptoms in skin lesions improved following oral administration of FPG. IgE secretion was significantly down-regulated, and this was accompanied by decreased levels of interleukin (IL)-4 and IgG1 and increased serum levels of IL-12p40 and IgG2a in FPG-treated animals. In splenocytes, the production of the Th1 cytokines IL-12p40 and IFN-gamma was up-regulated, while the levels of the Th2 cytokines IL-4 and 5 were down-regulated by FPG treatment. These results suggest that FPG inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the Th2 cell response and increasing the Th1 cell responses. Our results indicate that FPG is safe and effective for the prevention of AD-like skin lesions.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Inmunoglobulina E/metabolismo , Lactobacillus plantarum , Fitoterapia , Preparaciones de Plantas/uso terapéutico , Platycodon , Balance Th1 - Th2/efectos de los fármacos , Animales , Citocinas/metabolismo , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Fermentación , Inmunoglobulina G/sangre , Masculino , Ratones , Ratones Endogámicos , Preparaciones de Plantas/farmacología , Piel/efectos de los fármacos , Bazo/citología , Bazo/metabolismo , Células TH1/metabolismo , Células Th2/metabolismo
14.
Ann Allergy Asthma Immunol ; 106(1): 54-61, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21195946

RESUMEN

BACKGROUND: Platycodon grandiflorum is a traditional Asian medicine that is used to treat pulmonary and respiratory allergic disorders. OBJECTIVE: to investigate the effects of P grandiflorum in vivo in an animal model of atopic dermatitis (AD), with particular emphasis on its effects on T(H)1 and T(H)2 immune responses. METHODS: we established a model of AD-like skin lesions in NC/Nga mice. After oral administration of P grandiflorum, we measured cytokine and immunoglobulin profiles along with histologic examination of skin. RESULTS: P grandiflorum was nontoxic in a 2,4-dinitrofluorobenzene-induced model of AD-like skin lesions in NC/Nga mice. AD symptoms in skin lesions improved after oral administration of P grandiflorum. IgE secretion was significantly downregulated in P grandiflorum-treated animals, accompanied by decreased levels of interleukin (IL) 4 and IgG1 and increased serum levels of IL-12p40 and IgG2a. In isolated splenocytes, the production of the T(H)1 cytokines IL-12p40 and interferon-γ was upregulated by P grandiflorum, whereas the levels of the T(H)2 cytokines IL-4 and IL-5 were downregulated in a mouse model of AD-like skin lesions. CONCLUSIONS: these results suggest that P grandiflorum inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the T(H)2 cell response and increasing the T(H)1 cell responses. Our results indicate that P grandiflorum is safe and effective as a natural herbal medicine for the treatment of AD-like skin lesions.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Dinitrofluorobenceno/toxicidad , Fitoterapia , Extractos Vegetales/uso terapéutico , Platycodon , Células TH1/inmunología , Células Th2/inmunología , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Masculino , Ratones , Piel/patología
15.
J Am Coll Nutr ; 23(2): 157-62, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15047682

RESUMEN

OBJECTIVE: This study investigated the anti-aging effects of dietary isoflavones on photoaged hairless mouse skin. METHODS: Female hairless mice were administered soy isoflavone extract orally and irradiated with UV light for four weeks. The effects of the isoflavones on the skin appearance, collagen deposition and epidermal thickness in the UV-damaged mouse skin were measured using bioengineering and histochemical methods. In addition, the influence of the isoflavones on the collagen metabolism in the UVB-irradiated human skin fibroblasts was also investigated. RESULTS: In the isoflavone treated group, the skin had a better appearance and less wrinkling than that of the control group. Additionally, the amount of collagen deposition was higher in the isoflavone group. In the human fibroblast cells, the amount of procollagen de novo synthesized did not increase after isoflavone treatment and/or UV irradiation. However, the increase in the expression of the metalloproteinases (MMPs) as a result of UV irradiation was suppressed by the isoflavone treatment. CONCLUSIONS: It appears that isoflavones had an anti-aging effect on the UV-damaged hairless mice model, which is partly due to the inhibitory effects on UV-induced MMP-1 expression and the subsequent collagen degradation.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/metabolismo , Isoflavonas/farmacología , Piel/patología , Administración Oral , Animales , Células Cultivadas , Colágeno/efectos de los fármacos , Colágeno/efectos de la radiación , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Humanos , Inmunohistoquímica , Metaloproteasas/metabolismo , Ratones , Ratones Pelados , Distribución Aleatoria , Piel/efectos de los fármacos , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...